

PRÉSENTATION

SYSTÈMES D'HAUBANS ARCHITECTURAUX ASDO

Anker Schroeder fabrique les systèmes de tirants structurels ASDO pour tous les types de structures, que ce soit des stades, des ponts ou des bâtiments. Notre gamme de tirants s'étend des diamètres M12 à M160, et peut être fournie aussi bien en acier au carbone dans les qualités 355-S & 540-S qu'en acier inoxydable qualité 600-SE.

Anker Schroeder a une longue histoire dans la fabrication des tirants structurels, ayant équipé de nombreux projets de par le monde, tant en barres forgées que filettées, et cela depuis 1920. Avec plus de 90 années d'expérience dans l'élaboration de tirants structurels, nous pouvons vous proposer un éventail complet de solutions tant techniques qu'esthétiquement agréables, spécifiquement adaptés à votre application particulière.

Si vous aviez des questions ou des exigences spécifiques pour un projet particulier, n'hésitez pas à nous contacter.

Nous serons très heureux de développer une solution spéciale avec vous.

Avantages du système

- Le système ASDO est le seul système de tirants et de barres de compression qui possède l'agrément européen ETA pour l'ensemble de la gamme des diamètres nominaux de M12 jusqu'à M160.
- O Les chapes de connexion en acier moulé, associées à des tirants à haute limite élastique, permettent de reprendre des efforts jusqu'à 9.600 kN.
- La méthode du calcul aux éléments finis (MEF), a permis d'optimiser le dimensionnement des chapes en garantissant une distribution homogène quasi parfaite des efforts.
- O Barre jusqu'à 22m sans manchon possible.
- O Contrôle visuel simple de la longueur de visage minimum de la barre dans la chape.

La règlementation sur les Produits de Construction de 2011 (CPR) est entrée en application en juillet 2013, rendant obligatoire pour les barres de tension fournies dans l'Union européenne, d'être munies de la marque CE, indiquant qu'elles répondent aux exigences des codes de conception harmonisés Européens, et sont « conformes à leur utilisation ».

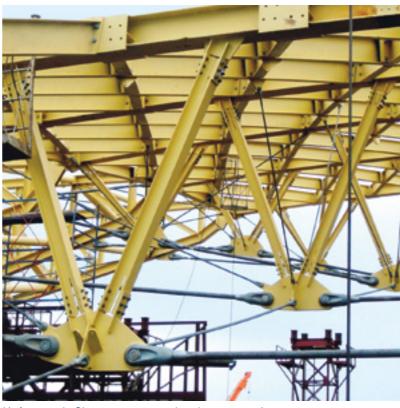
Les tirants structurels ASDO ont répondu à cette exigence depuis 2004 et sont fabriqués sous systèmes de qualité ISO 9001 et EN1090, contrôlés par un organisme indépendant. Ceci a permis à Anker Schroeder de fournir, avec succès, de nombreux projets de par le monde.

Les tirants ASDO pour:

Structures sous tension.

Contreventements architecturaux et facades structures en bois lamellé-collé.

Ponts bowstring, et structures.

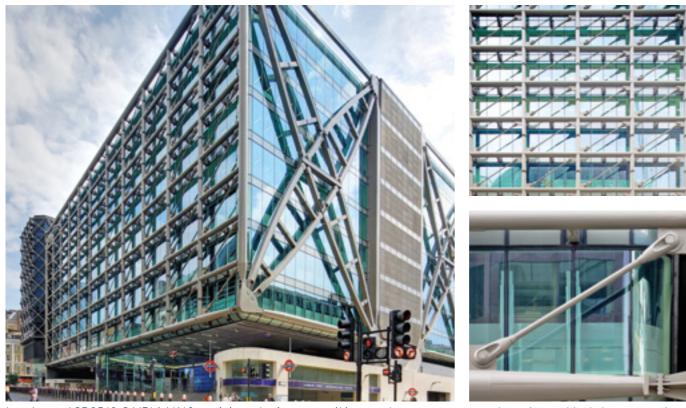

ASDO

INFORMATION GÉNÉRALE

RÉALISATIONS RÉCENTES

Les tirants ASD0540-S M100 à M140 sont été prescrits pour le nouveau magasin du club de football de Wolverhampton au Royaume-Uni, comme étant le seul système capable reprendre des charges élevées, et apte à une mise sous tension sur site.

L'aéroport de Sheremetyevo pendant la construction.



Les tirants ASD0540-S M24 à M130 sont utilisés pour soutenir la toiture de l'entrée du terminal 3 de l'aéroport Sheremetyevo à Moscou.

ASDO

INFORMATION GÉNÉRALE

RÉALISATIONS RÉCENTES

Les tirants ASD0540-S M76 à M160 ont été employés comme éléments de contreventement de cet immeuble de bureaux, unique et structurellement exigeant à Londres à Cannon Place.

Des barres ASD0540-S M76 à M100 par paire, pour les contreventements du nouveau siège principal de 52 étages du Journal New York Times.

Des tirants ASD0540-S M90 sont employés comme suspentes sur la Ligne Est de Londres du chemin de fer à Shoreditch. Outre un Contrôle Qualité très rigoureux, le système a également été testé à la fatigue sur deux millions de cycles.

Tirants ASD0540-S M56 utilisés pour les éléments sous tension de la passerelle Kâkenhus à Norrköping en Suède.

CHARGES ADMISSIBLES DES HAUBANS ASDO

Les systèmes d'Haubanage Architectural ASDO peuvent être fournis en deux qualités d'acier: au carbone, et en acier inoxydable. Chacun des composants a une résistance supérieure à celle de la barre.

Table 1 - Qualité ASDO

		ASD0350-S			ASD0540-S			ASD0	600-SE
Dimension n	ominale du filetage	M100-M130	M12	M16-42	M45-85	M90-M100	M105-M160*	M12-M42	M48-M56
f _y	[N/mm²]	355	355	540	540	520	630	600	460
f _{ua}	[N/mm²]	510	510	700	700	700	710	800	650

Allongement minimum A > 17%; Résilience 27J à - 20 °C; les qualités ASD0350-S en M140-M160 diffèrent de ci-dessus – voir la table 3 pour le calcul des résistances. *Les barres ASD0540-S en M105-M160 subissent une trempe et un revenu, et ne sont pas galvanisables.

Table 2 - Longueurs standards en stock

		ASD0350-S	ASD0540-S	ASD0600-SE
M16-M42	m	-	12	6
M45-M100	m	-	16	6
M105-M160	m	16	12	-

Pour des systémes de longueurs supérieurs les barres sont assemblées par des manchons ou des ridoirs. M12 disponible en longueurs de 6m uniquement.

Table 3 - Acier au carbone

Ë.	Dim. nom. du filetage			M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100	M105	M110	M115	M120	M130	M140	M150	M160
JSic	Dim. nom. barre		mm	12	16	20	24	27	30	36	42	45	48	52	56	60	64	68	72	76	80	85	90	95	100	105	110	115	120	130	140	150	160
mei	Section nominale barre A	q	mm²	113	201	314	452	573	707	1,018	1,385	1,590	1,810	2,124	2,463	2,827	3,217	3,632	4,072	4,536	5,027	5,675	6,362	7,088	7,854	8,659	9,503	10,387	11,310	13,273	15,394	17,671	20,106
t. di	Pas du filetage		mm	1.75	2	2.5	3	3	3.5	4	4.5	4.5	5	5	5.5	5.5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
rac	Section résistante de la barre A	i S	mm²	84	157	245	353	459	561	817	1,121	1,306	1,473	1,758	2,030	2,362	2,676	3,055	3,460	3,889	4,344	4,948	5,591	6,273	6,995	7,755	8,556	9,395	10,274	12,149	14,181	16,370	18,716
ပိ	Poids par mètre (barre)	_	kg/m	0.9	1.6	2.5	3.6	4.5	5.5	8.0	10.9	12.5	14.2	16.7	19.3	22.2	25.3	28.5	32.0	35.6	39.5	44.5	49.9	55.6	61.7	68.0	74.6	81.5	88.8	104.2	120.8	138.7	157.8
es	ASD0350-S	Limite èlastique	kN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,483	2,753	3,037	3,335	3,647	4,313	4,183	4,829	5,334
rges	A3D0330-3	Limite de rupture	kN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3,567	3,955	4,363	4,791	5,240	6,196	6,665	7,694	8,422
Cha	ASD0540-S	Limite èlastique	kN	31	85	132	190	248	303	441	605	705	795	949	1,096	1,275	1,445	1,650	1,868	2,100	2,346	2,672	2,907	3,262	3,637	4,886	5,390	5,919	6,472	7,654	8,934	10,313	11,791
ad	A5D0040-5	Limite de rupture	kN	43	110	171	247	322	392	572	785	914	1,031	1,230	1,421	1,653	1,873	2,139	2,422	2,723	3,041	3,463	3,914	4,391	4,896	5,506	6,074	6,670	7,294	8,626	10,068	11,623	13,289
tance Jlée¹	ASD0350-S	$F_{t,Rd}$	kN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,535	2,795	3,067	3,352	3,650	4,284	4,128	4,739	5,209
Résis calcu	ASD0540-S	F _{t Rd}	kN	30	79	123	178	232	283	412	565	658	742	886	1,023	1,190	1,349	1,540	1,744	1,960	2,189	2,494	2,818	3,162	3,525	3,965	4,374	4,803	5,252	6,210	7,249	8,368	9,568

Table 4 - Acier inoxydable

Ę.	Dim. nom. du filetage			M12	M16	M20	M24	M27	M30	M36	M42	M48	M56	M60+
nsion.	Dim. nom. barre		mm	10.8	15	18	22	25	28	34	39	45	52	
dime	Section barre A _q		mm²	92	177	254	380	491	616	908	1,195	1,590	2,124	
	Pas filetage		mm	1.75	2	2.5	3	3	3.5	4	4.5	5	5.5	
Caract.	Section équiv. filetage A _s		mm²	84	157	245	353	459	561	817	1,121	1,473	2,030	
Ca	Poids par mètre (barre)		kg/m	0.7	1.4	2.0	3.0	3.9	4.9	7.3	9.6	12.7	17.0	
ges		Limite élastique	kN	51	94	147	212	276	336	490	673	678	934	Autres diamètres supérieurs
Charges admissibles	ASDO600-SE	Limite de rupture	kN	67	125	196	282	368	448	653	897	958	1,320	sur demande
Résistance calculée ¹		$F_{t,Rd}$	kN	47	87	136	195	255	311	453	621	656	900	

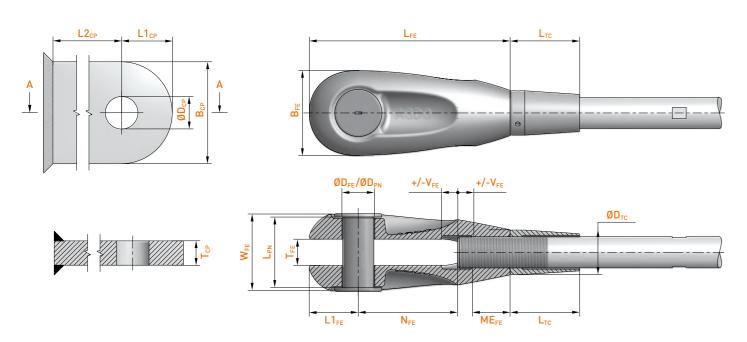
Notes pour les tableaux 3 & 4:

- 1. Valeur calculée de résistance $F_{t,ed}$ = min $\{f_v \times A_v / \gamma_{wol}; 0, 9 \times f_{uv} \times A_v / \gamma_{wol}\}$ suivant EN1993-1-8 avec les facteurs partiels γ_{wo} = 1,0 & γ_{wo} = 1,25 pour l'acier au carbone γ_{wo} = 1,1 & γ_{wo} = 1,25 pour l'acier inoxydable suivant EN1993-1-4.
- 2. Pour la valeur calculée de résistance de l'ensemble, les platines de connexion seront fabriquées en S35-J2 suivant EN10025 (ou équivalent) et de dimensions minimales suivant tableau 5.
- 3. Tous les filetages sont usinés et ne sont pas prévus pour des charges dynamiques. Des filetages roulés d'une résistance supérieure en fatigue peuvent être réalisés sur demande Merci de nous contacter 4. Pour la pleine capacité, les filetages doivent être au moins engagés sur 1,2 x le diamètre fileté voir le guide d'installation page 17.
- 5. Les barres en acier inoxydable M12-M42 sont en acier austénitique 1.4401/4; les diamètres supérieurs à M48+ sont en acier duplex 1.4462.

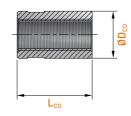
Protection contre la corrosion

Les systèmes d'Haubanage architectural ASDO peuvent être livrés soit bruts, soit galvanisés. Pour les diamètres jusqu'à M56 les chapes, les axes, les ridoirs, les manchons et les contre-écrous côniques sont systématiquement fournis galvanisés à chaud.

Les filetages sont repris après l'opération de galvanisation (Note, les barres ASD0540-S M105 à M160 subissent une trempe et un revenu, et donc ne seront pas galvanisées) afin de garantir la bonne vissabilité. Les éventuelles réparations sont réalisées suivant EN ISO 1461. Les méplats des barres sont réalisés après l'opération de galvanisation afin d'éviter les risques de rupture fragile. Note: de par la nature du traitement de galvanisation, l'aspect visuel d'un produit galvanisé est variable. Si un niveau esthéthique élevé de finition est requis, les systèmes devront alors être peints après l'application d'une couche primaire appropriée suivant un sablage. Les barres ASD0 ne peuvent pas être livrées avec une peinture de finition qui sera appliquée par le client. Merci de nous prévenir avant la commande si les barres devraient être peintes ultérieurement.



Galvanisé


DIMENSIONS DES COMPOSANTS ASDO

Les composants sont génériques et le détail des axes, manchons de connexion et ridoirs peuvent évoluer en fonction du diamètre de barre. Les ridoirs et les manchons pour M105 à M160 sont prévus avec un perçage latéral plutôt qu'un méplat pour clé.

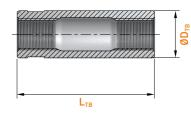


Table 5 - Dimensions des composants ASDO - toutes qualités (carbone et acier inoxydable)

Dimension non	ninale	M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100	M105	M110	M115	M120	M130	M140	M150	M160
	L _{FE}	77	104	129	155	172	193	232	271	290	310	334	361	386	412	438	463	489	516	547	579	610	645	677	709	742	773	837	901	966	1,031
	B _{FE}	33	44	53	65	73	81	98	114	122	130	139	150	159	172	182	193	203	219	230	243	258	271	287	301	316	330	354	381	410	436
	W _{FE}	31	42	50	61	66	77	90	104	108	119	126	139	149	159	167	179	191	196	211	226	237	248	259	271	284	303	327	351	375	405
	T _{FE}	12	17	18	23	23	28	33	38	38	44	44	49	54	59	59	64	69	74	79	84	89	94	96	101	106	116	126	136	146	156
FE	ØD _{FE}	13	17	21	25	28	32	38	44	47	50	54	58	62	66	70	74	78	82	87	92	97	102	108	113	118	123	133	143	153	163
Chape	L1 _{FE}	19	26	31	38	42	47	57	66	71	76	81	88	93	100	106	112	119	128	133	140	150	160	167	175	184	191	207	222	239	255
	ME _{FE}	14	19	24	29	32	36	43	50	54	58	62	67	72	77	82	86	91	96	102	108	114	120	126	132	138	144	156	168	180	192
	N_{FE}	38	51	64	76	84	95	114	134	143	152	166	181	196	210	225	240	254	267	287	306	321	340	359	377	395	413	449	486	522	559
	+/-V _{FE}	6	8	10	12	13,5	15	18	21	23	24	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
	Poids [kg]	0.17	0.42	0.83	1.4	2.0	2.8	4.8	7.6	9.4	11	15	18	22	27	33	39	45	51	63	74	85	100	119	136	156	177	221	277	340	417
Dimension non	ninale	M12	M14	M20	M2/ ₆	M27	M30	M36	M/ ₂ 2	M//5	M/ ₈	M52	M54	MAN	M6/i	MAR	M72	M76	Man	M85	M90	M95	M100	M105	M110	M115	M120	M130	M1//0	M150	M160

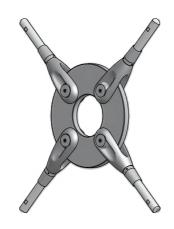
Dimension non	ninale	M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100	M105	M110	M115	M120	M130	M140	M150	M160
511	ØD _{PN}	12	16	20	24	27	30	36	42	45	48	52	56	60	64	68	72	76	80	85	90	95	100	105	110	115	120	130	140	150	160
PN Ave	L _{PN}	30	40	47	57	63	73	85	97	102	111	120	129	140	151	157	166	175	182	195	205	218	229	241	250	261	277	301	323	344	365
Axe	ØD _{PN} L _{PN} Poids [kg]	0.03	0.07	0.14	0.25	0.34	0.46	0.81	1.2	1.5	2	2	3	4	5	5	6	7	8	11	12	14	16	19	22	25	29	37	46	57	71

Dimension non	ninate	M12	M16	MZU	M24	M27	M3U	M36	M42	M45	M48	M52	M56	M6U	M64	M68	M72	M76	M8U	M85	MYU	MY5	MTUU	MTU5	MTTU	M115	M120	M130	M140	MISU	M16U
	T _{CP}	10	15	15	20	20	25	30	35	35	40	40	45	50	55	55	60	65	70	75	80	85	90	90	95	100	110	120	130	140	150
СР	B _{CP}	42	56	68	80	90	104	122	142	152	160	174	186	200	212	224	238	250	264	280	296	312	328	346	362	378	394	426	458	490	522
Platine/	ØD _{CP}	13	17	21	25	28	32	38	44	47	50	54	58	62	66	70	74	78	82	87	92	97	102	108	113	118	123	133	143	153	163
gousset	L1 _{CP}	21	28	34	40	45	52	61	71	76	80	87	93	100	106	112	119	125	132	140	148	156	164	173	181	189	197	213	229	245	261
	L2 _{CP} (min)	29	36	46	53	57	62	72	81	86	91	101	108	113	120	126	132	139	148	153	160	170	180	192	200	209	216	232	247	264	280

Dimension nom	ninale	M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100	M105	M110	M115	M120	M130	M140	M150	M160
TC	ØD _{TC}	17	23	29	35	39	42	51	60	64	69	75	81	87	92	99	104	110	113	122	129	134	143	152	158	166	173	187	202	216	232
Contre-écrou	L _{TC}	30	40	50	55	60	70	80	95	100	110	115	120	120	135	135	135	135	140	140	140	140	140	140	140	140	140	140	140	140	140
conique	Poids [kg]	0.03	0.05	0.09	0.1	0.2	0.3	0.4	0.7	0.8	1.1	1.3	1.6	1.8	2.2	2.7	2.9	3.3	3.6	4.2	4.7	4.9	5.7	6.6	7.0	7.8	8.6	10	12	13	15

Dimension noi	nınale	M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M6U	M64	M68	M72	M76	M80	M85	M90	M95	M100	M105	M110	M115	M120	M130	M140	M150	M160
	ØD _{TB}	20	27	36	42	48	51	60	70	76	83	89	95	102	108	114	121	127	133	140	152	159	171	178	191	194	203	219	241	254	273
ТВ	L _{TB}	53	70	88	106	119	132	158	185	198	211	225	234	244	254	263	273	282	292	304	326	338	350	387	399	411	423	447	471	495	519
Ridoir	+/-V _{TB}	12	16	20	24	27	30	36	42	45	48	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	Poids [kg]	0.09	0.16	0.32	0.6	0.9	1.2	1.8	2.8	3.3	3.9	5.4	6.2	8.5	10	12	14	16	18	20	24	30	34	42	49	62	61	82	96	115	147

Dimension nom	ninale	M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100	M105	M110	M115	M120	M130	M140	M150	M160
	ØD _{co}	20	27	36	42	48	51	60	70	76	83	89	95	102	108	114	121	127	133	140	152	159	171	178	191	194	203	219	241	254	273
CO	L _{co}	29	39	48	58	65	72	87	101	108	116	125	135	144	154	164	173	183	192	204	226	238	250	287	299	311	323	347	371	395	419
CO Manchon	Poids [kg]	0.05	0.09	0.17	0.3	0.5	0.7	1.1	1.7	2.0	2.3	3.2	3.9	5.3	6.3	7.8	9.2	11	12	14	17	22	25	32	37	47	47	65	77	93	119


Dimensions en mm sauf indication contraire - Sujet à modifications.

CROISEMENT DES BARRES ASDO

Les tirants ASDO peuvent être employés pour le contreventement d'un grand nombre de façons, mais dans toutes les situations, ils sont aisés à monter et autorisent l'ajustement sur site des longueurs pour solutionner les imprécisions de construction. Lors du choix d'un système de contreventements, l'accessibilité aux composants ainsi que le coût global de l'installation sont autant à prendre en considération que les aspects esthétiques. Les trois systèmes les plus courants sont comparés ci-contre:

Répartiteurs ASDO avec disque central

C'est le système le plus courant qui offre la plus grande flexibilité et autorise le plus de possibilités d'ajustement des longueurs. Il faut considérer qu'il double le nombre de chapes par comparaison à d'autres systèmes.

Répartiteurs ASDO avec ridoir à lumière

Le ridoir à lumière propose une alternative

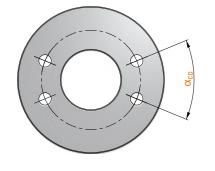
plus économique par rapport au disque de

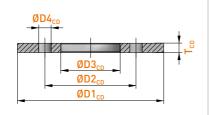
répartition, dépendant du diamètre, mais

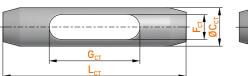
limite l'ajustement sur site. D'autres ridoirs

peuvent être ajoutés pour augmenter la

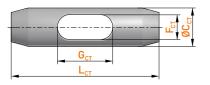
capacité de réglage.

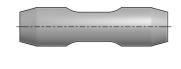





Si les tirants peuvent être écartés l'un de l'autre, (c'est-à-dire pas dans le même plan), alors les barres peuvent se croiser. C'est la solution la plus économique, avec le moins de composants, mais avec le moins de capacité de réglage. D'autres ridoirs peuvent être ajoutés pour augmenter la capacité de

CD Angle au centre du disque $45^{\circ} \le \alpha_{cn} \le 135^{\circ}$




CT-40 Ridoir à lumière angle au centre $40^{\circ} \le \alpha_{ct} \le 140^{\circ}$

CT-60 Ridoir à lumière angle au centre $60^{\circ} \le \alpha_{ct} \le 120^{\circ}$

Table 6 - Dimensions des disques de répartitions ASDO, qualités ASD0350-S & ASD0540-S

Dimension nominale		M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76
	T _{CD}	10	15	15	20	20	25	30	35	35	40	40	45	50	55	55	60	65
	ØD1 _{cd}	170	215	255	300	335	370	445	520	555	595	635	680	740	785	825	870	930
CD	ØD2 _{CD}	110	140	170	200	225	250	300	350	375	400	430	460	500	530	560	590	630
Angle au centre du disque $45^{\circ} \le \alpha_{CD} \le 135^{\circ}$	ØD3 _{cd}	60	80	100	120	135	150	180	210	225	240	260	280	300	320	340	360	380
40 _ 0 _{CD} _ 100	ØD4 _{CD}	13	17	21	25	28	32	38	44	47	50	54	58	62	66	70	74	78
	Poids [kg]	1.5	3.6	4.9	9.0	11	17	30	47	54	71	80	103	136	168	185	224	279

Dimension nominale		M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76
	ØC _{CT}	24	36	42	48	52	56	68	80	85	95	100	105	115	125	130	140	145
CT-40	L _{ct}	111	153	184	221	245	269	324	379	404	438	465	490	518	551	577	606	631
Ridoir à lumière	+/-V _{CT}	12	16	20	24	27	30	36	42	46	48	50	50	50	50	50	50	50
angle au centre	G _{CT}	57	81	94	111	123	133	162	189	200	220	235	250	268	289	305	326	341
$40^{\circ} \le \alpha_{CT} \le 140^{\circ}$	F _{cT}	16	20	24	30	33	36	44	52	55	58	64	68	72	78	82	88	92
	Poids [kg]	0.2	0.6	1.0	1.6	2.0	2.6	4.5	7.3	8.8	12	14	15	20	25	28	33	37

Dimension nominale		M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76
CT-60 Ridoir à lumière angle au centre $60^{\circ} \le \alpha_{cT} \le 120^{\circ}$	ØC _{CT}	-	-	-	-	-	-	-	80	85	95	100	105	115	125	130	140	145
	L _{ct}	-	-	-	-	-	-	-	306	326	352	374	393	414	439	458	479	499
	+/-V _{CT}	-	-	-	-	-	-	-	42	46	48	50	50	50	50	50	50	50
	G _{CT}	-	-	-	-	-	-	-	116	122	134	144	153	164	177	186	199	209
	F _{CT}	-	-	-	-	-	-	-	52	55	58	64	68	72	78	82	88	92
	Poids [kg]	-	-	-	-	-	-	-	6.6	8.0	10	12	14	18	22	25	30	33

Dimensions en mm sauf indication contraire - Suiet à modifications. Connecteurs et répartiteurs en acier inoxydable sur demande. Veuillez contacter notre service technique pour d'autres informations

BRACONS DE COMPRESSION ASDO

Axe Cône de compression Section circulaire creuse

N_{FE} E_{CC} L_{chs}

Chape

Bracons de Compression ASDO à l'aéroport de Zürich.

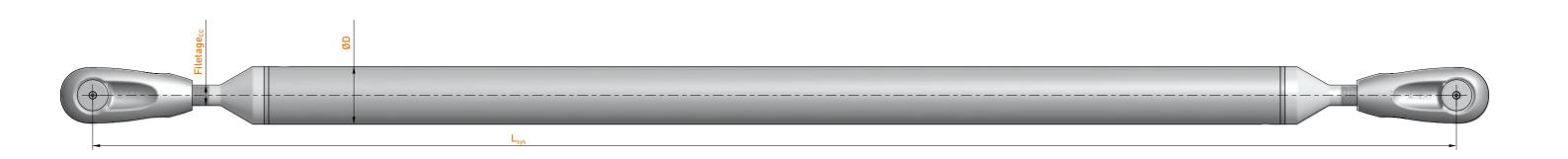


Table 7a - Bracons de Compression

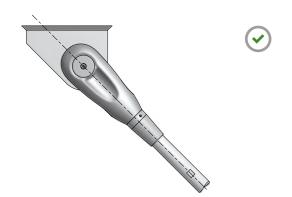
Filet _{cc}		M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100
N _{FE}	mm	38	51	64	76	84	95	114	134	143	152	166	181	196	210	225	240	254	267	287	306	321	340
E _{cc}	mm	106	121	135	150	161	176	202	223	240	257	260	275	282	301	302	318	336	343	360	362	388	390
N _{FE} + E _{CC}	mm	144	172	199	226	245	271	316	357	383	409	426	456	478	511	527	558	590	610	647	668	709	730
S355 CHS Dim. (diam. x ép.)	mm	33,7 x 4	44,5 x 4	54 x 5	63,5 x 5	73 x 5	82,5 x 5	101,6 x 6,3	114,3 x 6,3	127 x 8	139,7 x 10	139,7 x 10	152,4 x 10	159 x 10	177,8 x 10	177,8 x 10	193,7 x 12,5	203 x 12,5	219,1 x 12,5	244,5 x 16	244,5 x 16	273 x 16	273 x 16
Max N _{c,Rd}	kN	15	30	45	65	90	110	170	240	285	265	325	370	440	500	580	660	740	835	960	1.095	1.240	1.390

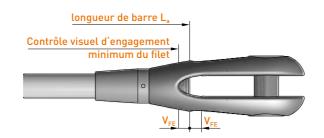
Table 7b - Charges admissibles Bracons de Compression en kN

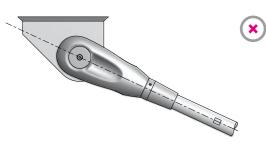
Longueurs Axe/Axe L _{sys} [m]	M12	M16	M20	M24	M27	M30	M36	M42	M45	M48	M52	M56	M60	M64	M68	M72	M76	M80	M85	M90	M95	M100
1	15	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	15	30	45	65	90	110	170	240	265	285	325	370	440	500	580	660	740	-	-	-	-	-
3	8	20	40	65	90	110	170	240	265	285	325	370	440	500	580	660	740	835	960	1.095	1.240	1.390
4	-	-	25	40	65	95	170	240	265	285	325	370	440	500	580	660	740	835	960	1.095	1.240	1.390
5	-	-	15	25	40	60	140	200	265	285	325	370	440	500	580	660	740	835	960	1.095	1.240	1.390
6	-	-	-	15	30	40	100	145	240	265	325	370	440	500	580	660	740	835	960	1.095	1.240	1.390
7	-	-	-	10	20	30	75	105	180	265	295	370	430	500	580	660	740	835	960	1.095	1.240	1.390
8	-	-	-	10	15	25	55	85	140	230	230	300	340	475	475	660	740	835	960	1.095	1.240	1.390
9	-	-	-	-	-	20	45	65	110	180	180	240	270	385	385	595	685	835	960	1.095	1.240	1.390
10	-	-	-	-	-	15	35	55	90	150	150	195	225	315	315	490	565	715	960	1.095	1.240	1.390
11	-	-	-	-	-	10	30	45	75	125	125	160	185	260	260	410	475	600	960	1.020	1.240	1.390
12	-	-	-	-	-	10	25	35	65	105	105	135	155	220	220	350	405	510	870	870	1.210	1.210

Notes:

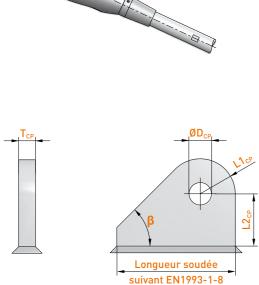
ANKER SCHROEDER


^{1.} Charge admissible approximative calculée en compression N_{c,Ru} suivant Eurocode EC3 (avec coéfficient de sécurité partiel γ_{M0}=1,0). Valeurs seulement à titre indicatif – les valeurs devront être contrôlées par une personne compétente pour chaque projet.


^{2.} Les diamètres CHS sont des suggestions uniquement – toute section standard pourrait être utilisée pour s'y adapter.


^{3.} Les systèmes en compression sont également disposnibles en acier inoxydable – Merci de contacter notre service technique pour de plus amples informations.

^{4.} Les dimensions des chapes sont reprises à la table 5.


INSTALLATION

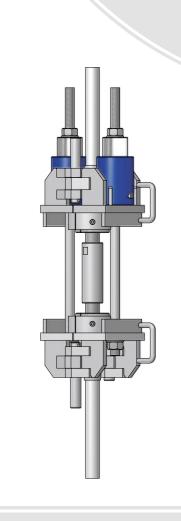
La forme de la platine de connexion dépend du transfert de charge à la structure porteuse comme montré ci-dessus. Il faut s'assurer d'un transfert correct de charge vers la structure.

La platine sera fabriquée en matériau S355J2 conforme à EN10025 avec les dimensions minimum de la Table 5. L'épaisseur minimum des platines peut être atteinte au besoin par la superposition de plaques soudées. Les platines en acier inoxydable présenteront une limite élastique ($R_{0.2\%}$), équivalente ou supérieure à la qualité S355 de même épaisseur.

La perçage des goussets pour le passage de l'axe doit être réalisé mécaniquement.

La longueur et la taille des cordons de soudure seront réalisées en corrélation avec EN1993-1-8.

Assemblage


Le système ASDO est simple à monter. En général, les tirants de moins de 6m seront livrés complètement assemblés (les axes sont emballés séparément); les longueurs supérieures peuvent être décomposées en paquets distincts de longueurs transportables. Dès réception du matériel, veuillez contrôler que tous les composants sont bien présents et qu'aucun composant n'a pas été endommagé. Merci de contacter notre service technique si vous suspectez qu'une quelconque détérioration se soit produite.

Avant le montage, assemblez les longueurs complètement, et ajustez les longueurs axe/axe. Pour le montage, placez simplement la chape sur la platine de connexion, introduisez l'axe et immobilisez-le, et serrez à la main le système en tournant le ridoir (si présent), ou la barre (si pas de ridoir).

La forme des axes varie suivant le diamètre nominal et la qualité d'acier, mais est typiquement celle représentée ci-dessus. Les rondelles de blocage d'axe seront serrées, et boquées avec du Loctite ou un produit similaire.

Installatio

En montant le système ASDO assurez-vous que le désaxage maximum n'excède pas 0,5° dans le plan de la ligne de force comme ci-dessus. Ceci évite la flexion des chapes et des platines de connexion.

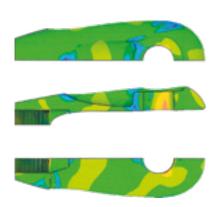
Les systèmes de tirants ASDO seront installés avec les chapes dans le même sens , et pas inversées comme sur l'illustration ci-dessus.

L'extrémité de la barre filetée doit être visible dans la chape, afin de s'assurer de l'engagement complet du filetage.

Pour une information détaillée sur l'installation de nos tirants, merci de contacter notre service technique.

Mesures sur site des charges et mise en précontrainte.

On peut mesurer les charges ou introduire des précontraintes dans les tirants ASDO lorsqu'ils ont été installés. Un équipement hydraulique spécialement conçu peut être loué, ce qui permet de mettre les tirants sous précontrainte, ou de mesurer la charge à laquelle ils sont soumis. Merci de contacter notre service technique pour de plus amples informations.


ASDO

INFORMATION

GÉNÉRALE

INFORMATION GÉNÉRALE

ASSURANCE QUALITÉ & DESIGN

Charges dynamiques

Le système ASDO peut également être fourni avec des filetages roulés à froid, qui offre une résistance à la fatigue supérieure à celle avec des filetages usinés.

Des tests de résistance à la fatigue ont été menés en conditions réelles avec succès sur des systèmes ASDO pendant 2 millions de cycles. ASDO ne recommande pas la galvanisation à chaud pour les filetages roulés, à cause du risque augmenté de fragilisation à l'hydrogène et de l'importante diminution de résistance à la fatique.

Merci de contacter notre service technique pour des systèmes ASDO sur des structures soumises à la fatique.

Design et contrôle qualité

Le système ASDO est fabriqué suivant les systèmes de qualité ISO 9001 et EN1090, sous contrôle d'organismes indépendants, assurant que les exigences des agréments techniques européens ETA et du marquage CE sont bien respectés.

La chape ASDO a été développée en utilisant la méthode des éléments finis (FEM), ce qui a conduit à une conception particulièrement efficace dans le transfert des charges.

Comme la plupart des systèmes de tirants sur le marché, les chapes sont réalisées en acier moulé. L'aptitude des pièces moulées à transférer les charges locales de la structure à la barre, a conduit ASDO à établir un système très rigoureux de contrôle des pièces de fonderie. Toutes les pièces moulées répondent aux exigences de la norme EN10340.

Sur demande, une série de tests non-destructifs peut être proposée. Merci de contacter notre service technique pour de plus amples informations.

Dessins techniques CAD / BIM

Pour vous aider dans le processus de conception, ASDO peut vous proposer les données des composants aux formats CAD et BIM. Ces fichiers sont disponibles sur notre website www.asdo. com et un serveur dédié assure à l'utilisateur de télécharger les informations les plus récentes; pour BIM cela inclut les documents qualité, les manuels d'installation, les brochures et les charges de calcul.

Pour les utilisateurs de CAD, nous proposons des fichiers 2D et 3D qui contiennent la plupart des composants de cette brochure. Les différents composants peuvent être arrangés dans des ensembles suivant les besoins : seule la longueur individuelle de la barre (voir page 9) et les restrictions à l'angle du croisement des contreventements (voir page 12) doivent être adaptées aux besoins de votre projet.

AUTRES PRODUITS

Ancrages ASDO accessoires pour les structures portuaires

Tirants et suspentes ASDO pour les ponts et ouvrages d'art.

Ancrages de micropieux ASDO pour le domaine gèotechnique.

Manilles ASDO pour charges lourdes et applications off-shore.

Cette publication fournit l'information et les détails techniques actuellement employés par Anker Schroeder dans la fabrication de ses produits.

Bien que nous ayons apporté le plus grand soin dans la préparation des renseignements repris dans la présente publication, nous n'acceptons aucune responsabilité quant à l'exhaustivité et l'exactitude de tous les éléments repris. Chaque client devra contrôler l'adaptation des produits à ses besoins. La publication de ces données n'implique pas une offre contractuelle.

En conformité avec la politique constante d'amélioration de ses produits, la compagnie Anker Schroeder se réserve le droit de modifier ou d'adapter certains détails. Merci de contacter notre service technique pour de plus amples informations ou pour confirmer l'actualité de ces détails.

Recyclage

L'acier est le matériau le plus recyclé dans la construction. Tout le matériel d'ancrage fournit par Anker Schroeder provient d'aciéries réputées, et lorsque cela est possible, jusqu'à 90% de la coulée provient d'acier recyclé. Lorsqu'une structure a atteint la fin de sa vie calculée, les barres Anker Schroeder sont recyclables à 100% comme mitraille.

